
PROGRESS REPORT 

t o  

NASA Grant NAG 1-350 

STRESS EFFECTS IN MULTILAYERS 

W. A.  Jesser 

Department of Materials Science 
School of Engineering and Applied Science 

University of Virginia 
Charlottesvil le , VA 22901 

for  the period November 1, 1986 to  July 31, 1987 

(NASA-CR-18ll72) STRESS PIEEC‘XS 11 lit3 7-27227 
EULTILAYERS Progress B e y o r t ,  1 Icw. 1986 - 
3 1  J o l -  1987 (Virg in ia  UEiv . )  40 p Avai l :  
YTIS BC At33/EP A01 CSCL 20K Uaclas 

63/39 0065443 



INTRODUCTION 

The research progress on calculations of interfacial stress in abrupt 

junctions and its effect on the defect state of the interface has yielded 

significant progress in the form of a series of papers. The first paper is 

coauthored with Professor J. H. van der Merwe and has been submitted to the 

Journal of Applied Physics. The second paper in the series is being complet- 

ed. As the title indicates the sharp interfaces in a multilayered super- 

lattice is treated for the case of equal elastic constants and layer thick- 

nesses. Part I1 of the series is for the same case but unequal elastic 

constants and thicknesses. Part 111 of the series is not well formed but is 

aimed at multilayers with different misfits such as those of step graded 

junctions or layers of altered lattice constants by means other than composi- 

tion variation e.g., variations in binding states from layer to layer. The 

series is expected to conclude with Part IV which will treat abrupt interfaces 

in mesa structures or other structures exhibiting finite width as opposed to 

infinite lateral extent. The following paper included in this progress report 

is the unreviewed part I of the series. 
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AN EXACTLY SOLVABLE MODEL FOR CALCULATING CRIT ICAL  M I S F I T  AND 

THICKNESS I N  EPITAXIAL  SUPERLATTICES. I. LAYERS OF EQUAL ELASTIC 

CONSTANTS AND THICKNESSES. 

J a n  H. v a n  der  Merwe and W.A. J e s s e r a )  

D e p a r t m e n t  o f  P h y s i c s ,  U n i v e r s i t y  o f  P r e t o r i a ,  P r e t o r i a  0002, 
R e p u b l i c  o f  S o u t h  A f r i c a .  

A parabo l i c  i n t e r a c t i o n  p o t e n t i a l  has  been used t o  develop a model 

f o r  c a l c u l a t i n g  t h e  m i s f i t  d i s l o c a t i o n  (MD) energy i n  the case  of a 

s u p e r l a t t i c e  of a l t e r n a t i n g  l a y e r s  of m a t e r i a l s  w i th  equal e l a s t i c  

cons t an t s  and thicknesses .  

one f o r  small  m i s f i t s  and t o  have some merit  f o r  cova len t  bonded 

materials, is  e x a c t l y  solvable for the c r i t i c a l  t h i ckness  above which 

i t  i s  e n e r g e t i c a l l y  favorable t o  lose coherency by t h e  i n t r o d u c t i o n  of  

MD's i n t o  the i n t e r f a c e s .  

c r i t i c a l  thickness  for e p i t a x i a l  s u p e r l a t t i c e s  f r e e  from t h e i r  s u b s t r a t e  

i s  somewhat more than four  times t h a t  f o r  a s i n g l e  e p i l a y e r  on a t h i c k  

s u b s t r a t e .  Furthermore, the c r i t i c a l  thickness  varies almost i n v e r s e l y  

with m i s f i t  t o  t h e  power 1.22,  when Poisson's r a t i o  i s  1/3. I t  was 

a l so  shown t h a t  t h e  c r i t i c a l  m i s f i t  f c  obtained by equat ing maximal 

m i s f i t  s t r a i n  and MD energies i s  a s i g n i f i c a n t  ove res t ima te  of f 

The r e s u l t s  f o r  a s u p e r l a t t i c e  a r e  compared with those of a t h i n  l a y e r  

on a t h i c k  s u b s t r a t e .  

The model, which i s  bel ieved t o  be a good 

I t  was found, f o r  a given m i s f i t  f ,  t h a t  t h e  

C 

a) Permanent address:  Department of Ma te r i a l s  Science,  Universi ty  

of V i rg in i a ,  C h a r l o t t e s v i l l e ,  Va 22901, U.S.A. 
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I .  INTRODUCTION 

me concept of a l i m i t i n g  m i s f i t  as the  upper l i m i t  of m i s f i t  below 
1 

which e p i t a x i a l  growth may occur, was introduced by Royer . This 

motivated Frank and van de r  Merwe2 t o  in t roduce  t h e  r e l e v a n t  concepts  of 

m i s f i t  s t r a i n  (MS), m i s f i t  d i s loca t ions  (MD's), c r i t i c a l  m i s f i t  f and 

c r i t i c a l  th ickness  hc. The criticaZ misfit f c  i s  t h e  l i m i t i n g  m i s f i t  

below which a l a y e r  of f i xed  th ickness  i s  homogeneously s t r a i n e d  i n t o  

r e g i s t r y  wi th  the  s u b s t r a t e  and h i s  the  cr i t i ca l  Zayer thickness 

above which ar. i n t e r f a c e  of $veri natural  m i s f i t  l o s ~ s  registry hy the 

C 

C 

i n t roduc t ion  of MD's. 

When ep i t axy  became involved i n  the  f a b r i c a t i o n  of devices  needing 

c r y s t a l s  of high p e r f e c t i o n ,  knowledge regard ing  f 

g r e a t  importance and c a l c u l a t i o n s  have been made assuming equilibrated 

MD d e n s i t i e s .  Although notable  successes  had been achieved wi th  t h i s  

observed d e n s i t i e s  were f r equen t ly  g r e a t l y  i n  excess  of 

and hc assumed 
C 

t h e  p red ic t ed  d e n ~ i t i e s ~ - ~ .  This discrepancy has  of t e n  been a t t r i b u t e d  

t o  non-equilibrium f e a t u r e s  of t h e  growth process  and t o  approximations 

needed t o  f a c i l i t a t e  t h e  ana lys i s .  Previous c a l c u l a t i o n s  have employed 

t h e  Volterra approximation t o  MD's using the  concept  of a "cut-off radius" 

t o  account f o r  t he  d i s l o c a t i o n  c o r e  energy, t h e  presence of o t h e r  MD's 

and the  nearby f r e e  ~ u r f a c e ~ - ~  f o r  f i lms  of f i n i t e  th ickness .  

t he  r e l i a b i l i t y  of t h e s e  approximations has  been j u s t i f i e d '  f o r  the  

case  i n  which the  c r y s t a l  thickness  i s  of t he  o r d e r  of the  MD spacing 

While 

and l a r g e r ,  t h i s  is n o t  so otherwise.  Furthermore an approximate 

procedure of energy m i n i r n i ~ a t i o n ~ ' ~ ' '  has o f t e n  been used too. This 

procedure,  expressed by Eq. ( 4 2 )  i s  ques t ionab le  p a r t i c u l a r l y  f o r  small  

m i  s f  i t s  . 
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The above regimes of concern, low misfit and thin crystals, are 

precisely those encountered in superlattice structures. It is thus of 

importance to resolve these issues so that confidence can be gained in 

the approximations adopted in calculations of f 

in the case of superlattices. 

towards solving the problems associated with the equilibrium accommodation 

and he, particularly 
C 

A t  the same time one can contribute 

of misfit by MD's and MS for all misfits and thicknesses. 

In this paper an exact solution of the "thin film-small misfit'' 
9 case for superlattices is obtained using the socalled parabolic model . 

In this model the periodic interaction potential between the crystals 

across an interface is modelled by a succession of parabolic arcs rather 

than the sinusoidal description of the Frenkel-Kontorowa" and Peierls 

Nabarro models 1 1 ' 1 2 *  Because of its sharply peaked crests it will be a 

more realistic representation for short ranged covalent bonding 

characteristic of many superlattices of semiconducting materials. 

In part I of this series we deal with the simplest case of a 

superlattice of similar materials where the layers have equal thicknesses 

as well as a thin film on a thick substrate of similar materials. This 

will be extended and generalized in subsequent parts to the more 

complicated cases of a thin su?erlattice film on a thick substrate and 

to superlattices of dissimilar materials and layers of unequal thicknesses. 

11. MODEL 

We make the conventional assumptions (i) that the crystals A (upper) 

and B (lower) have simple cubic structure with lattice parameters a and 

b respectively 1 " 1 2 ' 1 3 ,  (ii) that a and b may be generated from a 

reference lattice with lattice parameter c defined by 
13 



( 1 )  
1 p = Pa = (P + I ) b  = (P + $c, 

where P i s  an i n t e g e r  and ( i i i )  t h a t  t h e  c r y s t a l s  deform under appl ied 

f o r c e s  l i k e  i s o t r o p i c  e l a s t i c  cont inua w i t h  shear  moduli pa and % and 

Equation (1) de f ines  f ,  c and the MD Poissons r a t i o s  va and v 

s p a c i n s  p as 

11-13. 
b 

The i n t e r f a c i a l  atoms are  sub jec t ed  t o  two competing fo rces :  t h e  

atomic i n t e r a c t i o n  a c r o s s  t h e  i n t e r f a c e  which tends t o  a l i g n  atoms on 

e i t h e r  s i d e  and t h e  opposing e l a s t i c  f o r c e s ,  

modelled as a shea r  stress T having t h e  p e r i o d i c i t y  c i n  t he  re la t ive 

"displacement" U of i n t e r f a c i a l  atoms which were i n  r e g i s t r y  i n  the  

r e f e r e n c e  la t t i ce  1 1 - 1 2 .  

Peierls-Nabarro model t h a t  uses  a s i n u s o i d a l  dependence, and t h e  

p a r a b o l i c  p o t e n t i a l  model' i n  which t h e r e  i s  a piecewise l i n e a r  

dependence between T and U: 

The former i s  most simply 

The two most common models f o r  T are the  

where we may t ake  the  separat ion d of the two i n t e r f a c i a l  su r f aces  

equal  t o  c and t h e  i n t e r f a c i a l  shea r  modulus 1-1. i s  a measure of the 
1 

bonding ac ross  t h e  in t e r f ace .  The r e l a t i o n  (3) i s  repeated wi th in  

every per iod c of U t o  form a saw too th  p a t t e r n .  For mathematical 

convenience w e  consider  a t  f i r s t  a one-dimensional sequence of saw 

t e e t h  as would o b t a i n  from one-dimensional m i s f i t  a s  def ined i n  Eqs.(l) 

and ( 2 ) .  Two-dimensionality w i l l  be  introduced i n  a subsequent section. 

The e l a s t i c  r e l axa t ion  introduced by T ( U )  gene ra t e s  an atomic 



5 

p a t t e r n  with a sequence of localized d i s r e g i s t r i e s  c o n s t i t u t i n g  a 

s i n g l e  sequence of m i s f i t  d is locat ions ( M D ' S ) ~ ' ~ .  

i n t e r v a l s  p and s a i d  t o  "accommodate" t h e  m i s f i t  f .  

a l s o  be  p a r t l y  accommodated by m i s f i t  s t r a i n  e, i.e. a homogeneous 

s t r a i n  which is superimposed on the  o s c i l l a t o r y  s t r a i n s  of t h e  MD's, 

t o  reduce o r  e l i m i n a t e  t h e  misfit2-'. 

when one o r  both c r y s t a l s  are of f i n i t e  t h i ckness ,  which i s  t h e  case  

i n  t h e  c r y s t a l  p a i r s  c o n s t i t u t i n g  a s u p e r l a t t i c e .  

They are  spaced a t  

The m i s f i t  can 

Na tu ra l ly  t h i s  is only p o s s i b l e  

l?-- ...leL ,̂-c:.--l -:-- 
L u L  u a L i i c i u a L A L c x i  a l l u p l i e i t ~  the  iiieiihers of the pair  will be assumed 

t o  have i d e n t i c a l  elastic propert ies .  

equal  amounts when they are equally thick.  Thus, i f  t h e  average l a t t i ce  

parameters i n  t h e  s t r a i n e d  configurat ion a r e  2 and b, t h e  m i s f i t  s t r a i n  

e w i l l  be given by 

They w i l l  t hen  be s t r a i n e d  by 

- 

It follows t h a t  i n  the stra,aed conf igu ra t ion  t h e  r e l a t i o n s  (2) become 

1 - 
It i s  seen t h a t  f vanishes  (i = w) when e = Tf, 

Eqs. (41, and t h a t  t o  f i r s t  order  

as i s  i m p l i c i t  i n  

- - 
c = c  a n d f = f + 2 e .  

The second r e l a t i o n  i n  E q s .  ( 6 )  i s  the mathematical s t a t emen t  t h a t  t he  

m i s f i t  i s  accommodated by MD's and m i s f i t  s t r a i n  (MS) j o i n t l y .  

An important consequence of the presence of  MD's i s  t h a t  opposing 
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a i n t e r f a c i a l  su r f aces  may undergo d i f f e r e n t  displacements  w (x,O+) and 

(x,O-) normal t o  t h e  i n t e r f a c e  where s u p e r s c r i p t s  a and b r e l a t e  t o  b 

l a y e r s  A and B r e spec t ive ly .  

normal fo rces  which w e  may, using Hooke's law, model as an i n t e r f a c i a l  

normal s t r e s s  

Accordingly these  displacements  induce 

where W(x) i s  the  r e l a t i v e  normal e l a s t i c  displacement of t h e  two 

opposing su r faces ,  V .  an appropr ia te  Poisson 's  r a t i o  of t he  i n t e r f a c e  

and d = c .  F igu re  1 disp lays  one per iod of a s u p e r l a t t i c e  of a l t e r n a t i n g  

A and B l a y e r s ,  and the  coordinate  axes ,  with o r i g i n  midway between m's. 

1 

'w'e have introduced t h e  s impl i fy ing  assumption t h a t  A and B are 

e l a s t i c a l l y  equ iva len t  including the  i n t e r f a c e .  

This impl ies  t h a t  

v. = va = Vb E v 
1 

and a l lows  u s  t o  have the  layers  equal ly  th i ck ;  of thickness  2h = 2qc, 

say. Apart from automatical ly  s a t i s f y i n g  the  l a t e r a l  f o r c e  balance 

implied by Eq. ( 4 ) ,  it a l s o  f a c i l i t a t e s  t he  s i m p l i f i c a t i o n s  i n  Eqs. (IO) 

below. 

The b i c r y s t a l  l a y e r  between midplanes PQ and P'Q' i n  Fig.  1 with  

the  i n t e r f a c e  MN may now be  taken a s  a r e p r e s e n t a t i v e  u n i t  of t he  

s u p e r l a t t i c e .  Careful  cons idera t ion  of t he  r e l e v a n t  phys i ca l  p r i n c i p l e s  

and t h e  geometry displayed i n  Fig.  I guided us  t o  adopt t he  fol lowing 
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s i m p l i f y i n g  assumptions f o r  t he  i n t e r i o r  b i c r y s t a l  u n i t  of an ex tens ive  

s u p e r l a t t i c e  con ta in ing  m's: 

A l l  f i e l d  

of t h e  MD 

q u a n t i t i e s  ( s t r e s s e s  p.., T and N) have the  p e r i o d i c i t y  

spacing p ( o r  e.g. 

1 3  

Because of t h e  source of a n t i s w e t r y ,  IJ(x), one a l s o  has antisymmetry 

i n  T ( U ( X ) )  of Eq. (3) and i n  p 

antisymmetric i n  x: 

pzx(-x,z) = - PZX(X,Z). (9b) 

The stresses p and p that  ac t  on the  i n t e r f a c e  su r faces ,  a r e  

continuous ac ross  t h e  i n t e r f a c e ,  i.e. 

(x,O) = -r(lJ(x)), hence p (x,z) i s  
ZX zx 

ZZ ZX' 

Because of  symmetry p 

P'Q', i .e. 

(x,z) and w(x,z) van i sh  on the midplanes PQ and zx 

p,,(x,z) = 0, w(x,z) = 0 a t  z = * h .  

Three more remarks a r e  appropriate ,  ( i )  Because the  i n t e r a c t i o n  

energy between the  homogeneous m i s f i t  s t r a i n  and the  o s c i l l a t o r y  

s t r a i n s  t h a t  are  a s soc ia t ed  with the MD's vanishes  they may be  t r e a t e d  

independently,  This allows us, as i n  Eq. ( 9 a > ,  t o  use p €or  t h e  MD 

spac ing  i n  t h e  c a l c u l a t i o n s  and in t roduce  t h e  s t r a i n e d  va lue  ( see  
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Eq. (5)) when needed. (ii) Also, wi th  the  s i m p l e  cubic  c r y s t a l s  under 

cons ide ra t ion  t h e r e  w i l l  be a c ros s  g r i d  of MD's, r a t h e r  than a s i n g l e  

sequence. 

ene rg ie s  of the  MD's a r e  addi t ive  a s  i s  e x p r e s s e d ' i n  Eq. (31) below. 

( i i i )  

s u p e r l a t t i c e ,  "far"  (possibly two t o  four  l a y e r s )  from the  f r e e  

su r faces  and " subs t r a t e "  employed t o  f a b r i c a t e  t h e  s u p e r l a t t i c e .  

W e  make the  s implifying approximation t h a t  t he  r e l e v a n t  

The cond i t ions  (IO) s t r i c t l y  apply t o  the  i n t e r i o r  of t he  

111. GOVERNING EQUATTON AN0 I T S  SOLUTION 

We assume t h a t  t h e  MD's a r e  long and s t r a i g h t .  The r e l a t e d  problem 

is accord ingly  one of plane s t r a i n  which i s  normally analysed i n  terms 

14 of an Airy s t r e s s  func t ion  X(x,z) s a t i s f y i n g  t h e  biharmonic equat ion 

and, d e f i n i n g  the  s t r e s s e s  i n  terms of t he  r e l a t i o n s  

The s o l u t i o n s  of  ( I  1 )  s a t i s f y i n g  the  p e r i o d i c i t y  (9a) and having 

9 
t h e  symmetry (9b) can be expressed i n  Four ie r  transforms 

X a S b  = [ (AaSb + zCasb) cosh mz + (Bash + zDaSb) s i n h  mzlcos mx, ( 13a) 

( 13b) m m = 2 ~ n / p ,  n = 1,2 ,  ..... 

where A, B,  C and D a r e  as yet  unknown Four i e r  c o e f f i c i e n t s  and 

summation i s  implied i n  a l l  analogous subsequent expressions.  

By applying ( 1 2 )  we o b t a i n  r e s u l t s  of t he  form ( d e l e t i n g  s u p e r s c r i p t s ) :  
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m(B + 'Dl + 2c} sinh mz] cos mx, ( 14) m(A 
+ zC)+2D} cosh mz + { -m(B +zD) [ ' -m(A + zC) 

P EXXI = 
Z Z  

In order to employ Eqs. (10) we need expressions for 

We first obtain from components of displacement u and W. 

the strains e.. as 
1 J  

mx. 

the x- and z- 

Hooke's law 

We now calculate consecutively the rotation w 

and w by path integration of the form 

and the displacements u 
Y 

where 
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We o b t a i n  

2 W Y  = 2( I-v)m2[ D coshmz + C  sinhmz] s i n  mx. 

2vu = [ {m(A +zC) +2(1-v)D)cosh mz+{m(B +zD) +2(1-v)C)sinh mzlsinmx (19) 

2pw =-[ {m(B + zD) - 1-h)C)cosh mz +{m(A + zC) - ! 1-Zv)D)sinh mz] cos mx 

and hence, a t  z = O  

b xd a xd m b 1-V u(x> = - + u - ub = -+I - ( A ~  - A I +  - ( D ~  - D 1 l s i n m x ,  
P P 2u 1-1 

W(x) = - 1 [ m ( B b  -Ba) + ( 1 - 2 V ) ( C a  - C  b )]  C O S m ,  
(20) 

2lJ 

where we had used Eqs. (81, and xd/p is  t h e  n o n e l a s t i c  v e r n i e r  r e l a t i v e  

displacement due t o  the  m i s f i t .  

The governing equat ions,  i.e. the  equat ions  de f in ing  t h e  Four i e r  

c o e f f i c i e n t s  a r e  obtained by s u b s t i t u t i n g  f r o m  Eqs .  ( 3 ) , ( 7 ) ?  (14) , (19)  and 

(20) i n t o  (10): 

-m2Aa + ,'Ab = 0 

b b  m ( d a  + Ca)-m(mB + c ) = 0 

m(m(Ba + hDa) + Ca)c +m{m(Aa + hCa) +Da)s = 0 ( C )  

(d) 

( e )  

b b b  m{m(Bb - hDb) + C I C  -m{m(Ab - hC ) + D  )s  = 0 
(21) 

{m(Ba + hDa)-(1-2v)Ca)c +{m(Aa + hCa)-(1-2V)Da)s = 0 

( f )  

(g) 

? (h) 

b b b {m(Bb - hDb) - (1-2V)C IC -{rn(Ab - hC )-(1-2v)D ) s  = 0 

a 1 

b 1 -v b ~ ( - 1 ) " ' ~  (Aa - A ) -  - (Da - D ) = m m(mBa + ca)  - n  d r n  



where 

C Z cosh mh and s E s i n h  mh, 

w e  had used the  e l a s t i c  equivalence of crystals A and B (See Eqs. (8)) 

and (-l)"+ld/nn f o r  t he  Fourier s i n e  c o e f f i c i e n t  of xd/p. Note t h a t  c 

i n  (21 )  and(22) i s  no t  t h e  same as t h e  r e fe rence  l a t t i c e  c o n s t a n t  c i n  

Eq. ( I ) .  The l a t t e r  w e  a l s o  approximate by d. This system of l i n e a r  

equat ions may be  solved t o  give 

where, 

(24) hy = 2(1-v)h /(1-2v)d = 417 for v = 1/3,  

Important q u a n t i t i e s  which we need f o r  subsequent c a l c u l a t i o n s  are 

pzx(x,0) and U(x). We o b t a i n  by s u b s t i t u t i n g  from Eqs. (23) i n t o  (14) 

and (20) 

E h/d = h/c , 

= z P D~ sinmx, n n  n= 1 

00 
cx u(X> = - + Z: Q D~ sinmx, n n  P n=l 

where Pn9 

A 1  so 

. .  

0 and Da a r e  the  P, Q and Da i n  E q s .  (23 ) .  a n 

t h e  q u a n t i t y  Q / P  plays a s i g n i f i c a n t  r o l e  and may be 
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w r i t t e n  a s  

where 

IT and f3=m ITd = 

X = 2nhn/p = 21~qfn  = <n 

and vh is  def ined i n  EQ. ( 2 4 ) .  

The r e l a t i o n s  (23) - (28) now c o n s t i t u t e  t he  s o l u t i o n  of t h e  

problem concerned w i t h  the  atomic r e l a x a t l o n s  r e s u l t i n g  from the 

competing i n t e r a c t i o n s .  

of t h e  i n t e r f a c e  i n t o  a sequence of MD's spaced a t  d i s t a n c e s  p . 
When MS coex i s t s  w i t h  MD's p,c and f must be replaced everywhere by 

the MS dependent quantities p, c and ? defined i n  Eqs, (5). 

A p l o t  of U V.S. x w i l l  d i s p l a y  t h e  r e s o l u t i o n  
9,13 

- -  

The energy p e r  u n i t  area of an i n t e r f a c e  c o n s i s t s  of s e v e r a l  

a 
D D con t r ibu t ions :  t he  MD s t r a i n  energies  E 

t he  energy of m i s f i t  E 

and Eb i n  t h e  two c r y s t a l s  and 

due t o  the r e s i d u a l  d i s r e g i s t r y  a t  t he  i n t e r f a c e .  m 
The homogeneous m i s f i t  s t r a i n  ene rg ie s  E a and Eb i n  t h e  two c r y s t a l s  may - - 

e e 
simply be added t o  the above energies  t o  y i e l d  the t o t a l  enersy. The sum 

of the l a t t e r  two energies  is given by the we l l  known expression 3,15 

which inco rpora t e s  t h e  equa l i ty  of t h e  e l a s t i c  c o n s t a n t s  (Eq, (8j) and 

e q u a l i t y  of  MS along the  i n t e r f a c i a l  cubic  axes. 

been 

It has a l s o  previously 
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shown' t h a t  the energy pe r  u n i t  a r e a  of i n t e r f a c e  a s s o c i a t e d  w i t h  t h e  

MD'S i.e. ED = E: + E: + Em, i n u n i t s  of pc /4 r2 ,  IS given by 

€D = ED/ 

m 

= T :  
n= 1 

- = -  " l P I 2  dx - cx pzx(x,0) / - lJc 
P 4Tr2 4.rr 2p -p/2 

(30) 

where the second l i n e  follows on using Eqs. (25) - (28): Since  i n  t h e  

case of quadra t i c  symmetry under cons ide ra t ion  t h e r e  3s  a cross-gr id  of 

MD's t he  t o t a l  energy p e r  u n i t  area of t he  i n t e r f a c e  ?s g iven  by 

where everywhere B and X should be replaced by '5 and 2 i .e. f by ?, t o  

stress t h e i r  dependence on the MS as defined by Eqs. (5) and (6). 

We can execute two consecutive approxirnatlons t o  t h e  r e s u l t s  i n  

Eqs. (30) and (311, which are of i n t e r e s t .  The f i r s t  one i s  t h e  t h i c k  

(h,q +") l i m i t  ED. 

(provided ? + f 0). 

W 

I t  follows from (27)  and (28)  t h a t  i n  t h i s  case 

9 This agrees  with a previous 

d e r i v a t i v e s  of t he  g a m a  funct ion T(x) 

r e s u l t  and may be  wri t ten i n  terms of 
16 

as  
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where $(x) i s  t h e  digamma funct ion T'(x)/I'(x) and Yo= 0.5772 

Eu le r ' s  constant .  

is 

The second approximation t o  t h e  r e s u l t  in Eq. (33) is t o  r e p l a c e  

t h e  sum by an i n t e g r a l :  

1 

1 1 

= f3 Rn(l+ 
a, dn 
D n. n (n  + I / @ )  

E = SO3 (354 

Both t h e  value of the lower i n t e g r a t i o n  l i m i t  n .  and t h e  accuracy of 

t h i s  i n t e g r a l  i n  represent ing the c'xc may be zssessed through a 

comparison of t h e  r e l a t i o n s  i n  ( 3 4 )  and (35). 

term i n  the  sum of Eq. (33) ,  

i n t e g r a l  i n  Eq. (35a) is expected t o  be somewhat less than 

We o b t a i n  the value of I?. as 

1 

As n - 1  f o r  t h e  f i r s t  

t h e  a p p r o p r i a t e  lower l i m i t  of t h e  

un i ty .  

1 

il. = exp(-yJ = 0.561 
1 

by comparing Eqs. (34) and (35a) f o r  l a r g e  va lues  of I / @ .  

I n  t h i s  case 

(35b) 

which gives  the  r e s u l t  i n  Eq. (35b) f o r  n.. 
1 

We now r e t u r n  t o  t h e  general case of Eq. (30) and adopt t h e  

approach employed f o r  t he  " i n f i n i t e l y  thick" l a y e r  i n  r e p l a c i n g  the 

sum by an i n t e g r a l :  
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Using the transformations and definitions of Eqs.  (28) 

we obtain 

_ -  
r;/B = 2(1-u)rl f a , 

where the "bar" signals the presence of MS 'e. 

Near the critical thickness, which is presently an important 

regime 'i --* 0 because 7 + 0 and hence $(%I --* Oe. 

converges exceedingly s lowly  and the integral approximation (37) becomes 

more convenient. 

not lend itself to exact integration. Since $(%I tends to unity as 2 

becomes large and is already almost unity at 5 = 2 it remains to find 

an acceptable approximation for small 5 .  

c (3 cosh?) and 

form $(g) = A / E  + BZ where A and B are rational functions of 0 .  

Numerical comparison has shown that 

The series accordingly 

However, the integrand is rather complicated and does 

Power series expansion of 
- 

suggests a sufficiently simple representation of the 

is an acceptable approximation. 

divide the interval (niC,  "1 of integration into two subintervals 

(nit, ft) and (Zt, ") where the transition value of is 

It is accordingly convenient to 
- 

- - 
Xt = 2 + n.< . 

1 
(39b) 

We obtain on integration 
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a - - 
5 2  

- 
= c I ( n i f )  = - r B  [arctanBXt - arctan Bn.fl + Rn(l + = - ) I ,  (40a) a 1 

Xt 

where 

and the n.f: dependence of I(n.f) relates only t o  t h e  lower l i m i t  n.f 

i n  (37) and n o t  ni t  i n  (39b). 
1 1 1 

A comparison of t h e  in t eg ra t ed  r e l a t i o n s  (40) w i t h  t h e  sum i n  

Eq. (30) (summing over  s u f f i c i e n t  terms to  reach t n  f X = 2 and 

i n t e g r a t i n g  from X = 2 onwards) shows t h a t  t h e  discrepancy does n o t  

exceed 6%,  The sum is t h e  g r e a t e r  of t he  two. 

t he  r e l a t i o n s  (40) should be r e s t r i c t e d  t o  m i s f i t  v a l u e s  2 
Above t h i s  v a l u e  Eq. (35a) should be used. 

- 
- 

Note, however t h a t  

l ! ~ .  

I n  the l i m i t  = 2Vq? + 0 

I ( n i t )  i n  (40) becomes 

(z + 0) the  th i ckness  approaches t h e  

c r i t i ca l  v a l u e  and 

'*en however, 

f ,  E as def ined by (40a) approaches the va lue  i n  Eq. (35),  as i t  

should,  

TI and hence f = 2W? + 2llT)f becomes l a r g e  a t  nonzero 

D 

V .  E Q U I L I B R I U M :  C R I T I C A L  MISFIT AND T H I C K N E S S  

I n  the p a s t  t h e  c r i t i c a l  m i s f i t  f a t  which the minimum energy 

conf igu ra t ion  undergoes a t r a n s i t i o n  from a coherent  i n t e r f a c e  t o  one 

with MD's has  o f t e n  been approximated by s e t t i n g  t h e  energy for 

t h e  coherent c o n f i p r a t i o n  (MS 1 = s  f c  f o r  a s u p e r l a t t i c e )  equal 

.. 
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to one with only MD's, characterized by natural misfit f i.e. 
C' 

the contention being that there are either no MD's or enough t o  

accommodate practically all the misfit as in the one-dimensional Frenkel- 

Kontorowa model . = qcc is 

the thickness at which equilibrium considerations require MD's to be 

2 Alternatively, the critical thickness h 
C 

injected for given misfit f. Thus n is defined by ( 4 2 )  6~ setting 
C 

fc = f and TI = v,. 
The true criterion for the minimizing strain 'e is m 

- -  
aE/ai = o at e = e m . ( 4 3 )  

Among others we wish to assess the accuracy of (42), 

formulation of cD in Eq. (37) facilitates the numerical evaluation of 

cD we perform the minimization of E in Eq. (31) using the relation (37) 

rather than the series in (30). 

Since the integral 

We obtain after some simplification 

where 

as may be seen with reference to Eqs, (6) and ( 3 8 ) .  Hence, for a given 

thickness n ,  the critical misfit f follows by letting 

yielding 

+ fc/2 
C m 
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i n t e r f a c e  is l a r g e ,  one needs a n a l y t i c a l  express ions  t h a t  accu ra t e ly  

g ive  the  energy of t he  MD arrays per  u n i t  a r e a  p e r  i n t e r f a c e .  

of t hese  regimes of i n t e r e s t  have been s a t i s f i e d  through the  

development of Eqs. (37) - ( 4 1 ) .  I t  i s  i n s t r u c t i v e  t o  compare the  

energy va lues  obta ined  from t h i s  r e s u l t  f o r  d i f f e r e n t  m i s f i t  va lues ,  

which must b e  small  because of t he  approximations involved i n  Eq. (6) .  

Both . 

Figure 2 d i s p l a y s  the  func t iona l  dependence of t he  MD energy 

per  u n i t  a r e a  per i n t e r f a c e  of a s u p e r l a t t i c e  free from its strhstrate. 

The t h i c k  curve l a b e l l e d  O0 i s  a p l o t  of Eq. (35) which r ep resen t s  

" i n f i n i t e l y  thick" l aye r s .  

wi th  each number represent ing  t h e  th ickness  va lue .  

coiiiparisoii t he  ?E energy f o r  a t h i n  l a y e r  on a t h i c k  s u b s t r a t e  i s  a l s o  

shown. The s u p e r l a t t i c e  curve l a b e l l e d  1 c l o s e l y  approximates 

the  curve f o r  a monolayer on a t h i c k  s u b s t r a t e  up to  va lues  of f < 0.1. 

The t h i c k  curve  l a b e l l e d  00 a l s o  represents t h e  asymptot ic  va lue  of 

the  t h i n  l a y e r  on an i n f i n i t e l y  t h i c k  s u b s t r a t e  f o r  t he  l a y e r  

th ickness  be ing  l a rge .  Because of t he  choice  of a r e p r e s e n t a t i v e  

s e c t i o n  of t h e  s u p e r l a t t i c e  f o r  purposes of c a l c u l a t i o n ,  

1 s u p e r l a t t i c e  corresponds t o  TI = ( see  Fig.  1)  and i s  l abe l l ed  by 

t h i s  th ickness  value.  Only for  t he  i n f i n i t e  l a y e r  i s  the  s lope  of 

the  curve i n f i n i t e  a t  the  or ig in .  In a l l  cases  the  s lopes  de t r ease  

with i n c r e a s i n g  m i s f i t  a t  constant  th ickness  and a l s o  decrease a t  

zero m i s f i t  as t h e  th ickness  va lue  i s  decreased.  The nea r ly  l i n e a r  

r i s e  of t he  energy wi th  mis f i t  f o r  a very  t h i n  layered  s u p e r l a t t i c e  

The numbered curves a r e  p l o t s  of Eq. (40) 

For purposes of 

a monolayered 

PAGE BLANK NOT FILMED 
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can be understood from the  arrays of MD's which a c t  nea r ly  

independently of t h e i r  in-plane spacing and t h e r e f o r e  c o n t r i b u t e  t o  

t h e  s u p e r l a t t i c e  energy e s s e n t i a l l y  i n  p ropor t ion  t o  t h e i r  number 

d e n s i t y  . 
One n o t i c e s  t h a t  t h e r e  a r e  reg ions  of f f o r  which t h e  va lue  of 

00 

E exceeds t h a t  va lue  E~ f o r  t he  i n f i n i t e l y  t h i c k  layered  

s u p e r l a t t i c e .  The m i s f i t  values  f o r  which t h i s  occurs  are near  

D 

- 
qf = ]/I? vhich is alsc  near the tral;sft ion yaliis :: of Eq.  (39;. t 

03 

The r i s e  of E over  ED i s  n o t  caused by the  approximations D 

involved i n  Eq. (39) b u t  is  a l s o  found i n  the  exac t  r ep resen ta t ion  

Eq. (30). Mathematically i t  occurs  because $(X) i n  Eq. (30) f a l l s  

below u n i t y  near  Xt  w h i l e  $(i)= u n i t y  f o r  a l l  ? when 

(Eq. (33)) .  Phys ica l ly  t h i s  r e s u l t  can be understood a s  a consequence 

of t he  boundary cond i t ions  for t h e  s u p e r l a t t i c e  case.  

q -+ 00 

There i s  t h e  

c o n s t r a i n t  of zero displacement a t  the  midplanes of a s u p e r l a t t i c e  

l a y e r  while  t he  f r e e  s u r f a c e  of t he  t h i n  l a y e r  on a t h i ck  s u b s t r a t e  

i s  s t r e s s  f r e e .  

A comparison of t h e  MD energy of a s u p e r l a t t i c e  wi th  t h a t  of a 

s i n g l e  l a y e r  on a t h i c k  s u b s t r a t e  shows t h a t  when the  l a y e r  

thickness  of t h e  s u p e r l a t t i c e  is smal l ,  

s t r e s s  f i e l d s  of the  MD's i n  ad j acen t  l a y e r s  occurs  

m i s f i t  i s  not  too l a r g e .  The magnitude of t h i s  c a n c e l l a t i o n  

s t r o n g  c a n c e l l a t i o n  of the  

provided the  
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reduces the MD energy by about 20% i n  a monolayered s u p e r l a t t i c e  of 

gnall m i s f i t  as compared t o  a s i n g l e  monolayer on a t h i c k  

s u b s t r a t e .  

~ l s o  shown i n  Fig.  2 is a g raph ica l  comparison of t h e  two methods for 

determining a t  a f i x e d  thickness  n, t h e  c r i t i c a l  m i s f i t  f 

i t  i s  e n e r g e t i c a l l y  favorable  t o  in t roduce  MD's i n t o  the  i n t e r f a c e  of a 

s u p e r l a t t i c e .  

t o  g iv ing  the  c r i t i c a l  thickness  rl (=q) f o r  l o s s  of coherency i n  a 

s u p e r l a t t i c e  of f i x e d  m i s f i t  f ( = f  ). 
homogeneous s t r a i n  (MS) energy of a coherent  s u p e r l a t t i c e  t o  t h e  MD 

energy when a l l  t he  m i s f i t  is accommodated by MD's i s  given a n a l y t i c a l l y  

by Eq. ( 4 2 )  and g r a p h i c a l l y  by t h e  i n t e r s e c t i o n  p o i n t  of t h e  homogeneous 

s t r a i n  energy ( p l o t t e d  aga ins t  f = 2;) with the -MD energy cume.  

of t h i s  s i t u a t i o n  are shown f o r  two thickness  values .  

s t r a i n  energy curves A and B (do t t ed  parabolas) correspond r e s p e c t i v e l y  

to  ha l f - l aye r  t h i ckness  values OF rl equal  t o  10 and I .  The i n t e r s e c t i o n  

p o i n t s  are  near m i s f i t  values r e s p e c t i v e l y  of 0.0315 and 0.154 which are 

a l s o  the  c a l c u l a t e d  va lues  from Eq. ( 4 2 ) .  The second and proper method 

of c a l c u l a t i n g  t h e  c r i t i ca l  m i s f i t - ( c r i t i c a l )  thickness  p a i r  of v a l u e s  

i s  equ iva len t  t o  equat ing the s l o p e  of the MD energy curve a t  t he  

o r i g i n  ( a l l  of t he  m i s f i t  i s  accommodated byMS)to the  s l o p e  of the 

Same value on the homogeneous s t r a i n  energy curve. This is the 

cond i t ion  expressed by Eq. ( 4 3 )  f o r  G m  = 7 f and i s  shown i n  Fig. 2 f o r  

t h e  case q = 1 by the two (dashed) tangents  T. One tangent  touches t h e  

MD energy curve a t  the  o r i g i n  t o  determine i t s  s lope ,  and the  o t h e r  

tangent  of the same s l o p e  i s  placed i n  con tac t  w i th  t h e  homogeneous 

s t r a i n  energy curve a t  the  unique p o i n t  of the same s lope  l a b e l l e d  i. 

above which 
C 

This p a i r  of mi s f i t - t h i ckness  va lues  i s  e x a c t l y  e q u i v a l e n t  

C 

The one method of equat ing the  
C 

H o t s  

The homogeneous 

I 
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This point is at the misfit value 0.131 which is also the calculated 

value from Eq. (45). Notice that the misfit values given by the two 

methods, one proper and labelled i, the other approximate and 

labelled ii are rather different (0.131 versus 0 .154)  ; ii is too high 

by about 17%. 

improvement over the approximate one. 

Clearly the proper method is preferred and offers an 
3,8,9,17 

An exploration of how the magnitude of this overestimate varies 

with thickness revealed that it varied from about 17% for a monolayered 

superlattice tc aboi;t 35% fsi large Values of r], ;.e. over a thousand 

monolayers. A similar comparison of the estimated critical thickness 

for a given misfit showed that the estimate exceeded the proper value 

by about 30% when the layer thickness is small and by about 40% when 

q is large. -.is rosslt suggests that m e  eoiild "correct" the 

estimated value of critical thickness by multiplying it with a factor 

of about 0.75. 

The main objective of the present considerations is to find an 

exact expression for calculating the critical thickness 0, above 

which loss of coherency at a given misfit is energetically favorable 

(Eq. ( 4 5 ) ) .  

1 elastic constants (va = p,, = pi  = U) and V = - 3 

curves of Fig. 3, Here one sees a strong dependence of on 

natural misfit f f o r  small values of f. From a log-log plot (inset 

on Fig. 3) of the thickness-misfit values a nearly straight line 

emerges so that over a range of values a power law models the 

dependence fairly accurately. It follows from the figure that 

The evaluation of this expression for the case of uniform 

is displayed in the 

C 
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o r  e q u i v a l e n t l y  

-0.82 f *0 .17  q . 
c 

These expressions 

(46b) 

d e s c r i b e  the equi l ibr ium case f o r  which t h e r e  are 

no b a r r i e r s  t o  the  a c q u i s i t i o n  of MD's. In  p r a c t i c e  b a r r i e r s  e x i s t  

and t h e r e f o r e  one expects  s i g n i f i c a n t  d e p a r t u r e s  from these  

equ i l ib r ium va lues  when comparisons with experimental  values are made. 

These d i f f e r e n c e s  between experiment and theory are  common with the  

experimental  va lues  of  MD d e n s i t i e s  exceeding t h e  t h e o r e t i c a l  ones 

p a r t i c u l a r l y  i n  t h e  case  of semiconductor m a t e r i a l s  where t h e  f r i c t i o n a l  

f o r c e  opposing t h e  motion and nuc lea t ion  of MD's can be q u i t e  l a rge .  One 

can see t h e  magnitude of these d i f f e r e n c e s  for example i n  the  work of 

Yatthews3 and People and Bean . 8 

It  i s  of i n t e r e s t  to compare the r e s u l t s  of  t h e  p re sen t  development 

f o r  s u p e r l a t t i c e s  of individual  layer th i ckness  2rl t o  the same parabolic- 

p o t e n t i a l  model b u t  f o r  an i n f i n i t e  s u b s t r a t e  and a s i n g l e  e p i t a x i a l  

f i l m  of equ iva len t  thickness  2n (Appendix). There a r e  two d i f f e r e n c e s  

between t h e s e  two caseso The f i r s t  d i f f e r e n c e  i s  t h a t  f o r  the case of 

s u p e r l a t t i c e s ,  t he  p a r a l l e l  MD a r rays  i n  a d j a c e n t  i n t e r f a c e s  s t rong ly  

i n t e r a c t  when the  l a y e r  i s  t h in  and lower t h e  energy of t he  MD a r r ay  

i n  comparison t o  t h a t  of the s i n g l e - i n t e r f a c e  case on the  i n f i n i t e  
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s u b s t r a t e .  The second and more important d i f f e r e n c e  l i e s  i n  the  

accommodation of m i s f i t  by homogeneous e l a s t i c  s t r a i n .  

s u p e r l a t t i c e  each l a y e r  accomodates h a l f  the  m i s f i t  so t h a t  t he  N 

i n t e r f a c e s  and N+1 layers can become coherent  wi th  one h a l f  of t he  

e l a s t i c  s t r a i n  t h a t  i s  required t o  produce a coherent  i n t e r f a c e  i n  t h e  

i n f i n i t e - s u b s t r a t e  case.  

homogeneous s t r a i n  energy on s t r a i n ,  t h i s  in t roduces  a f a c t o r  of four  

between the  two cases .  The combined e f f e c t  on c r i t i c a l  thickness  of 

t h e s e  two d i f f e r e n c e s  i s  displayed i n  the  Table. 

For the  

Because of the  square  dependence of t he  

The th ickness  of t h e  s ing le  l a y e r  i s  compared to  twice the  ha l f -  

t h i ckness  of each s u p e r l a t t i c e  l a y e r ,  The r a t i o  of l a y e r  thickness  f o r  

l o s s  of coherency i n  the  case of a s u p e r l a t t i c e ,  a s  compared t o  t h a t  of 

a s i n g l e  l a y e r  on a t h i c k  subs t r a t e  i s  about f i v e  f o r  small l aye r  

th icknesses  and approaches four  f o r  l a r g e  th icknesses .  This r e s u l t  

agrees  wi th  f a c t o r  of fou r  argued f o r  s u p e r l a t t i c e s  by Matthews and 

Blakes lee  , The r a t i o  of c r i t i c a l  m i s f i t s  f o r  t hese  two cases  a l s o  

approaches four  f o r  t h i c k  layers  bu t  s t a r t s  a t  a f a c t o r  of about t h ree  

f o r  a t h i n  layer .  

18 

The r a t i o  of c r i t i c a l  thicknesses  g r e a t e r  than the  f a c t o r  four  

introduced by the  homogeneous e l a s t i c  s t r a i n  term can be understood i n  

terms of t he  s lope  of t he  MD energy a s  a func t ion  of m i s f i t .  The MD 

energy f o r  t he  s u p e r l a t t i c e  case  i s  l e s s  than t h a t  f o r  t he  case of an 

i n f i n i t e  s u b s t r a t e ,  Correspondingly the  s lope  of t h i s  curve i s  a l s o  

l e s s  a t  t he  common value of m i s f i t  a t  the o r i g i n .  I n  s a t i s f y i n g  the  

p a r a l l e l  tangent  cond i t ion  t h i s  r e s u l t s  i n  an o v e r a l l  s h i f t  i n  c r i t i c a l  

th ickness  va lues  by a f a c t o r  somewhat more than fou r  when comparing 

the  s u p e r l a t t i c e  case  t o  the case  of an i n f i n i t e l y  t h i c k  subs t r a t e .  
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VII. CONCLUSIONS 

A pa rabo l i c  i n t e r a c t i o n  p o t e n t i a l  has  been appl ied  t o  t h e  case of 

a f r e e  s tanding  s u p e r l a t t i c e  of many l a y e r s  t o  o b t a i n  an e x a c t  s o l u t i o n  

f o r  t h e  energy of the  a r r ays  of m i s f i t  d i s l o c a t i o n s  a t  t he  i n t e r f a c e s .  

An a n a l y t i c  express ion  f o r  t h i s  energy as a func t ion  of m i s f i t  and 

l a y e r  th ickness  i s  provided i n  Eqs. (37) and (40). The main r e s u l t s  of 

t h i s  t h e o r e t i c a l  development a r e :  

1 .  The e n e r g e t i c a l l y  favored c r i t i c a l  thicrtnecs fer loss of --I-------- L U I I T L  Tl lLY 

depends approximately inverse ly  on m i s f i t  t o  t he  power 1.22 f o r  t he  

case  of uniform e l a s t i c  cons tan ts  and a Poisson 's  r a t i o  of 1/3. 

2. A comparison of the  c r i t i c a l  th ickness  i n  a s u p e r l a t t i c e  w i t h  t h a t  

of a s i n g l e  l a y e r  on a Zhick s u b s t r a t e  shows t h a t  f o r  a f i x e d  m i s f i t ,  

t h e  c r i t i c a l  thickness  of t h e  s u p e r l a t t i c e  i s  between fou r  and f i v e  

times t h a t  of t he  s i n g l e  l aye r .  This r e s u l t  occurs  because f o r  t he  

s u p e r l a t t i c e  case  each layer  accommodates h a l f  t h e  m i s f i t  and t h e  

d e r i v a t i v e  aED/2f of t he  MD energy, € 

t he  th i ck - subs t r a t e  case  a t  f 

th icknesses  where the values of CD approach one another .  

Est imat ing the  c r i t i c a l  thickness  and c r i t i c a l  m i s f i t  by equat ing  

the  maximum s t r a i n  energy (G = f / 2 )  t o  the  maximum m i s f i t  d i s l o c a t i o n  

energy ('e = 0) was shown to  be  r a t h e r  crude; t he  est imated c r i t i c a l  

m i s f i t  f o r  given thickness i s  too  high by about 252 f o r  a l l  

th icknesses .  

m i s f i t  is too high by about 35X. 

i s  somewhat sma l l e r  than t h a t  of D 
0, except €or l a r g e  l a y e r  

3.  

Simi la r ly  the es t imated  c r i t i c a l  th ickness  f o r  given 

4. The equi l ibr ium e l a s t i c  s t r a i n  and hence the  l a t t i c e  cons t an t s  of 
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t he  s u p e r l a t t i c e  vary near ly  i n v e r s e l y  wi th  thickness  once t h e  

c r i t i c a l  thickness  f o r  loss of coherency has  been exceeded. 

5. The pointed high c r e s t s  of t he  p a r a b o l i c  p o t e n t i a l ,  which i s  the  

main o b j e c t i o n  to  the model has  on t h e  one hand l i t t l e  impact when 

the  m i s f i t  i s  s m a l l  (MD's f a r  a p a r t )  and otherwise may have m e r i t  

f o r  s h o r t  ranged covalent ly  bonded m a t e r i a l s ,  

i s  t h a t  i t  y i e l d s  an exac t ly  so lvab le  model f o r  t he  c r i t i ca l  m i s f i t  

and c r i t i c a l  thickness ,  

The MD energy per u n i t  area per  i n t e r f a c e  f o r  a t h i n  layered  

s u p e r l a t t i c e  can r i s e  s l i g h t l y  above t h a t  f o r  an i n f i n i t e l y  t h i c k  

layered  s u p e r l a t t i c e  when of i s  near  l / v .  

I t s  main advantage 

6 .  

7. The a n a l y s i s  app l i e s  t o  the i n t e r i o r  of t he  s u p e r l a t t i c e  f a r  from 

the  f r e e  sur faces .  
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APPENDIX: T H I N  EPILAYER ON A THICK SUBSTRATE 

A comparison of t h e  t h i n  e p i l a y e r  - t h i ck - subs t r a t e  case  wi th  the  

s u p e r l a t t i c e  had always been of g r e a t  i n t e r e s t .  This i n t e r e s t  s t i l l  

p e r s i s t s .  

s u p e r l a t t i c e  a n a l y s i s ,  

t h e  r e s u l t s  needed f o r  the  present  comparison have n o t  been given and 

can b e  der ived  r a t h e r  compactly 

The former can be d e a l t  w i th  by some modi f ica t ion  of t he  

Although t h i s  had been d e a l t  w i th  prev ious ly  

from the  foregoing c a l c u l a t i o n s ,  

Let  A be t h e  t h i n  l a y e r  of th ickness  h and B by a s e m i i n f i n i t e  

The main modif icat ion i n  t h e  model i s  t h a t  t he  midplane s u b s t r a t e .  

boundary condi t ions  ( lob)  need be rep laced  by 

a a p,,(x,z) = 0,  pzz(x ,z )  = 0 a t  z = h 

f o r  t he  f r e e  boundary of A and 

f o r  t he  vanishing of t h e  s t r e s s e s  i n  B f a r  from the  i n t e r f a c e ;  i ( a n d  j) 

being  e i t h e r  x o r  z. 

The cond i t ion  (A.2) can be incorpora ted  by d e l e t i n g  the  e-mz par t s  

b 
of x , 
i s  most s imply  handled by put t ing  

(Eq, (13a)) and i n  subsequent express ions  r e l a t i n g  t o  B. This 

A b = B b ,  C b = D .  b 
(A. 3) 

We may thus w r i t e  down the  q u a n t i t i e s  
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b mz b = - m * ( ~ ~  + zc ) e  cosmx 
Pzz  

b 1 b b mz u (x,z) = - + zc  + ~ ( 1 - u ) ~  I e s in= 
2lJ 

which we need e x p l i c i t l y  below and i n  which we had used the  e l a s t i c  

equivalence i n  Eqs. (7). It now fol lows from Eqs. (19) and ( A . 4 )  t h a t  

U(x) = xd/p + (mAa + 2(1-v)Da - mAb + 2(1-V)C b ) /2p  

W(X> = +mBa + (I-2v)Ca + mAb -(1-2V)C b )/lJ . 

S u b s t i t u t i o n  from Eqs. (141,  ( A . 4 )  and (A.5)  into (loa) and from (A.4) 

i n t o  (A . I )  shows t h a t  Eqs. (21) (a)  - (c) and (h) a r e  unchanged and 

t h a t  otherwise we ob ta in  f o r  pZz(x,h)  a = 0 i n  (A.1) and p,,(x,O+) a = N[W(x)] 

i n  ( loa )  the r e l a t i o n s  

-m(Aa + hCa)c - m(Ba + hDa)s = 0 

-m2Aa + [mBa - (1-2V)P - mB b +(l-ZV)C? = 0. (1-2V)d 

(A. 6 )  

(A,6) and (21) (a) - (c) and (h) a r e  s i x  equat ions needed t o  so lve  for  

the  s i x  unknown Four ie r  c o e f f i c i e n t s .  Our main i n t e r e s t  i s  t o  

c a l c u l a t e  E using the  i n t e g r a l  i n  Eq.  (30). Hence we only  need the  

va lues  of Ba and C 

D 
a 

i n  

= m t d a  + ca] sinmx. a * zx (A. 7) 



23 
We o b t a i n  

Ba = -(m3h2 + 6m2h2)R/A, 

Ca 

A = m(P + Q ) ,  R = ( p / m >  

p 

Q 

= [ m 2 s 2 +  6m(sc + s 2  + mh)]R/A, 

= m3(s2 - m2h2) + m26(s2 + s c  + mh - m2h2), 

= h 2 ( s 2  + cs - mh - m2h2) + d6 ( C  + s ) ~ ,  

X = (1-v)/d, 6 = X/(1-2v), a = ;/E , 
(x,O) = R/(1 + QP-'1, 

P Z X  

E = c  1 
OD 

ci D i  
n [ n  + + ( 3 / ~ 1  

- -  
where c ,  s, and 5 have been defined i n  Eqs. ( 2 2 )  and (28). 

p o i n t  i t  i s  of i n t e r e s t  t o  note t h a t  +(z) --* 1 as 'x + m 

befo re  so t h a t  the same result as i n  Eq. (33) is obtained f o r  l a r g e  

thicknesses  bu t  t h a t  no s i m p l e  express ion  l i k e  (39) f o r  small  ?, could 

be obtained t h a t  connects accurately enough t o  $(f) = 1. 

A t  t h i s  

(0 + - )  as 

With r e spec t  to  energy minimization we ob ta in ,  i n s t e a d  of t h e  

r e l a t i o n s  (61, (311, (381, (44a) and (45):  

-t -t -t t t  -t -t -t t ft = f + e , 5 = 2.rrq (f -$), x =n< , x = n  t at =2(1-v)q m i n' 

t -  ( 1  -v)  -t -t t 
5 I ( X  ,a 11 E =  4( l+v)vcrl e?'+ 

1 - v  r-T 8n2(1 +v)qt 

-t t wi th  I ( X  ,a ) and I(O,at)  given by Eq, (37) not  by Eqs. (40a) and (411, m 
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where the  l e t t e r  t designates  ( t ) h i n  f i lm- ( t )h i ck  s u b s t r a t e .  I t  is 

no tab le  t h a t  t he  express ion  for E: i n  (A.9) i s  of  t he  same form as 

i n  Eq. (44a) b u t  t h a t  the expression f o r  f t i n  (A.9)  d i f f e r s  from 
C 

t h a t  for  fc i n  Eq. (45) by a f a c t o r  of two; t h a t  i s  apar t  from t h e  

f a c t  t h a t  Qt $I i n  Eq. (A.8) i s  a d i f f e r e n t  f u n c t i o n  and t h a t  we 

- .  
e m 

usua l ly  make a comparison where t h e  l a y e r s  i n  t h e  s u p e r l a t t i c e  have t h e  

s a r e  th ickness  a s  t he  t h i n  film, i , e .  r) = I t  r) 
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t 

ft 

.07143 

.04395 

.O 1 283 

. 00 1955 

TABLE. 

a single layer on a thick substrate and 2n 

layer in a superlattice when the natural misfit f is 

the same in both; similarly the critical misfits f 

and ft respectively are compared for equivalent 

Comparison of the critical thickness nt of 
C 

of a 
C 

C 

C 
thicknesses rl t = 2qc. 

C 

t 
r l C  - 

1 

2 

10 

100 

2nC 

5.09 

10.03 

49.3 

460 

5.09 

5.04 

4.93 

4.60 

fc/fS 
2.78 

2.99 

3.45 

3.66 
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F i  gure Capt ions 

Fig.1. Schematic representation of a superlattice of alternating 

layers A and B of equal thickness 2h = 2nc. The AB and BA 

interfaces are represented by solid lines and contain 

planar arrays of MD's of'alternating sign as shown. The 

coordinate origin is in an interface and lies midway between 

MD's with the z-axis normal to the interface planes and the 

y-axis along the axis of the MD's shown. 

acLLLuLI UL L I I ~  ~ U ~ ~ L L ~ L L L C ~  is given by tile inid pianes r 

in layer A and PQ in layer B each lying at a distance h = qc 

on either side of the reference interface MN that contains 

the origin and is located in the interior of the stack of 

layers. 

Misfit dislocation energy per unit area E D  (numbered solid 

curves in units of trc/4n2) as a function of misfit f and 

homogeneous elastic strain energy per unit area E,/ (llc/2.rr2), 

(lettered dotted curves) as a function of e = f/2. For 

A representative 

---A:-- -c LL- -..--- . I - L L ?  -*.-.* 

Fig.2. 

e - 

calculational purposes )J = )Jb - - Pi = )J and V = 1/3. The a 
thick curve labelled corresponds to Eq. (35) while the 

rest of the numbered curves are given by equation ( 4 0 )  with 

the numbers referring to the half-thickness Q = h/c. 

Strain-energy curves A and B refer respectively to 

1 .  

case q = 1 and define the critical misfit fc by a(2ED+ E, ) /ae  =O 

at ern = f /2 given by point i. 

approximation to the critical misfit as calculated by 

2ED(fc) = Ee(Gm = f / 2 ) .  

= 10 and 

The two linear tangents T are drawn by dashes for the 

Point ii represents an 
C 

Note that the value of critical 
C 
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misfit at i (fc L1 0.131) is rather different from that of 

point ii (fc - 0.154). 
Fig.3. Graph of the relationship between critical thickness rl and 

C 

the corresponding critical misfit f 

log-log plot that the critical thickness is reasonably 

approximated by a power law with an exponent near 1.22. 

Note from the inserted 
C *  
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